Package: WeightSVM 1.7-16

WeightSVM: Subject Weighted Support Vector Machines

Functions for subject/instance weighted support vector machines (SVM). It uses a modified version of 'libsvm' and is compatible with package 'e1071'. It also allows user defined kernel matrix.

Authors:Tianchen Xu [aut, cre], Chih-Chung Chang [ctb, cph], Chih-Chen Lin [ctb, cph], Ming-Wei Chang [ctb, cph], Hsuan-Tien Lin [ctb, cph], Ming-Hen Tsai [ctb, cph], Chia-Hua Ho [ctb, cph], Hsiang-Fu Yu [ctb, cph], David Meyer [ctb], Evgenia Dimitriadou [ctb], Kurt Hornik [ctb], Andreas Weingessel [ctb], Friedrich Leisch [ctb]

WeightSVM_1.7-16.tar.gz
WeightSVM_1.7-16.zip(r-4.5)WeightSVM_1.7-16.zip(r-4.4)WeightSVM_1.7-16.zip(r-4.3)
WeightSVM_1.7-16.tgz(r-4.4-x86_64)WeightSVM_1.7-16.tgz(r-4.4-arm64)WeightSVM_1.7-16.tgz(r-4.3-x86_64)WeightSVM_1.7-16.tgz(r-4.3-arm64)
WeightSVM_1.7-16.tar.gz(r-4.5-noble)WeightSVM_1.7-16.tar.gz(r-4.4-noble)
WeightSVM_1.7-16.tgz(r-4.4-emscripten)WeightSVM_1.7-16.tgz(r-4.3-emscripten)
WeightSVM.pdf |WeightSVM.html
WeightSVM/json (API)
NEWS

# Install 'WeightSVM' in R:
install.packages('WeightSVM', repos = c('https://zjph602xtc.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/zjph602xtc/wsvm/issues

Uses libs:
  • c++– GNU Standard C++ Library v3

On CRAN:

5.84 score 3 stars 7 packages 11 scripts 579 downloads 4 exports 0 dependencies

Last updated 26 days agofrom:408bae5ca9. Checks:OK: 9. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 11 2024
R-4.5-win-x86_64OKOct 11 2024
R-4.5-linux-x86_64OKOct 11 2024
R-4.4-win-x86_64OKOct 11 2024
R-4.4-mac-x86_64OKOct 11 2024
R-4.4-mac-aarch64OKOct 11 2024
R-4.3-win-x86_64OKOct 11 2024
R-4.3-mac-x86_64OKOct 11 2024
R-4.3-mac-aarch64OKOct 11 2024

Exports:best.tune_wsvmtune_wsvmtune.controlwsvm

Dependencies:

Weighted Support Vector Machine Formulation

Rendered fromwsvmdoc.Rnwusingutils::Sweaveon Oct 11 2024.

Last update: 2020-05-28
Started: 2020-05-28

Readme and manuals

Help Manual

Help pageTopics
Plot Tuning Objectplot.tune_wsvm
Plot WSVM Objectsplot.wsvm
Predict Method for Subject Weighted Support Vector Machinespredict.wsvm
Parameter Tuning of Functions Using Grid Searchbest.tune_wsvm print.summary.tune_wsvm print.tune_wsvm summary.tune_wsvm tune_wsvm
Control Parameters for the tune/tune_wsvm Functiontune.control
Subject Weighted Support Vector Machinescoef.wsvm print.summary.wsvm print.wsvm summary.wsvm wsvm wsvm.default wsvm.formula